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A l~me t~ I t  is shown that, provided that certain relations exist between the transport properties, 
every mass transfer problem, including those with simultaneous heat transfer and chemical reaction, 
can be ~,pttmed by relations of tim "Ohm's Law" type: rh" = g .  B, whea~ rh" is the r~uired mass 
transfer rate through the surface, g is a surface conductance dependent on aerodynamic factors, and 
B is a dirmmsionle~ driving-force dependent on the thermodynamic p r o p e ~  of the main stream, 
of the fluid in contact with the phase boundary, and of the transferred substance, 

The standard formulation is derived from the ditfcmntial equations of conservation and flux and by 
reference to a wall-flux boundary condition. Thereafter examples are given of methods of calculating 

g, followed by examples of expressions for B valid for particular cases. 

R~mm~---A condition qu¢ ceataines relations existent entre les propri~t6s de transport, on montre que 
tout probltmz de transport de ~ ,  n~me s'il comprend ~la  fois transfcrt de chaleur et ~atcfion 
chinfique, Imut ~tre exprim~ par des relations du type de la Ioi d'Ohm: th"  ---- g .  B eli  fn'" eat la densit6 
de flux de tnas~ traasport~e/t travers la surface, g est la conductance de surface qui d6pend des facteurs 
a6rodynamiques et Best  la force agissante, sons forme adimensionnelle, qui d*pend des propri6"t6s 
thermodynamiques de r6coulement principal, du fluide en contact avec la surface de s6paration, et 
de la substance transportfe. 

La formulation g6n6rale est obtenue/L partir des 6quations aux d6riv6es partielles de conservation 
et de transport, r appor t~  aux conditions aux limites du transports It la paroi. 

Des exemples sent dennis ensuite pour les m6thodes permettant le calcul de g, et sent suivis par 
diff6rentes expressions de B valables dans des cas particuliers. 

Zmmmauffua~g~Es wird gezeigt, dass jedes Problem der StoffBbertragung einschliesslich deter mit 
glzichzeitipr W~wmeiihertragung und chemischex Reaktion in Form eines Ohm'schen Gesetzes 
fn" ffi g .  B amoglrflckt werden kann, sofem gewisse Beziehungen zwischen den TransportgrSssen 
bestehen. Es bedeutet th"  die gesuchte Mengenstromdichte an der Obetliflche, g eine Oherfl~chenleit- 
fiihigkeit, abhlingig yon aerodynamischen Faktoren und B eine dimensionslose treihende Kraft, die von 
den thermodynamischen Eigenschaften des Hauptstroms, der Fliissigkeit im Kontakt mit der Phasen- 
grenzflllche und des tihertragenen Stoffes abh~ingt. Aus den Differentialgleichungen der Erhaltung und 
der StrSmmlg unter Bezugnahme auf eine Grenzhedingung tier WandstrOmung wurde eine einheitliche 
lFormulierung abgeleitet. Beispiele ffir die Methoden zur Berechnung yon g wcrden mitgeteilt und 

schliesslich werden die Ausdriicke yon B fiir besondere FiUle angegehen. 

Ab~lntet~HoKaaauo, qTO npt[ yCJIOBHH 0yIIIe0TBOBaHiIK onpe~e~eHn~X eOOTHomeH~fl 
.~em~y xapaa-rep~cT~KaMu IIepeHoca Kam~a~ aa~aqa nepenoca, Bmlmqaa TaKme aa~aq~ c 
o~HoBpeMeHno npoHcxo~mm~s~ x~M~qec~ofi peanu~et~ ~t nepeHoco~ TerLaa, somev 5~zr~ 
a~pamesa np~ ~osomn COOTHOmeHHi~, IIO~OSU~ aauoHy O~a: ~h"=  g . B ,  r~e ~h"--Tpe- 
6ye~a~ c~opocTh nepeHoca ~acc~ qepea Hosepx~ocT~, g-noBepx~ocTna~[ npoao~n~OCT~,, 
aa~HcH~la~ OT a a p o ~ s a s ~ q e c ~ x  ~awropoa, B-SeapaauepHaa ~Hmyma~ cmaa, aa~nc~- 
ma~ OT Tep~o~m~aMHqee~x CBO~CT~ OCHOBH0rO nOTO~a, mH~OCTH, conpH~acamme~c~ c 
noaepx~ocT~m paa~Ie~a ~aa, a Tagme ~epenocH~o~ cyScTa~Umi. 

O6ma~ nocTaHoB~a aa~au~ noayueHa ~a aHaaHaa ~t~epentma~ll~HUX ypa~HeH~ 
coxpaHeH~ ~ noToi~a C yq~TOM yCaOBH~ Ha rpaHH~e CSeHHOra Ho~'o~a IIpH~oAffrcn 
MeTO~H BH~IHCo'IeHHH g, conpoBom~aeM~e np~MepaMH BMpameH~ ~ B, cHpaBe~JIHBHX 

~ ~aCTHWX c~y~ae~. 

t Professor of Heat Transfer. 
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NOTATION m '  '~, 

b, dimensionless transferred property, 
equation (28); 

B, dimensionless driving force for mass n,, 
transfer (----- ba - -  bs), equation (33); 

c, specific heat of fluid mixture at na.~, 
constant pressure (B.t.u./lb °F);t 

D, diffusion coefficient (ft2/hr); P, 
f, mass fraction in fluid mixture of one P1, 

component in a two-stream flow, /'2, 
regardless of state of chemical aggre- Pa, 
gation (dimensionless); ~"z, 

F, function of B and/~/y appearing in 
equation (36); 

g, surface conductance for mass trans- ~"s 
fer, equations (34) and (34a), 
0b/fOhr); 

g*, value of g when B = 0, equation Q, 
(45), (lb/ftShr); 

G, vectorial total mass flux at any point r, 
in fluid (lb/fOhr); 

G, *'mass velocity" at reference point in 
stream 0b/f#hr); R, 

h, specific enthalpy of mixture 
(=- Y~ m~hj), (B.t.u./lb); t, 

J X, 
hi, partial enthalpy of substance j 

(B.t.u./lb); y, 
hLs,  "latent heat" of phase change of a,  

transferred substance (B.t.u./lb); 
H, heat of reaction of"fuel" at constant- 7, pressure (B.t.u./lb); 
k, thermal conductivity of mixture F, 

(B.t.u./ft hr °F); 
K, function of B and/~/y appearing in 

equation (36), equal to ordinate of /~' 
Fig. 2; Subscripts 

I, typical dimension of body (it); a, 
ms, mass of j in unit mass of mixture i, 

(dimensionless); A 
rh", total mass flux across phase boun- fu, 

dary into considered phase (lb/ft2hr); 
th"~,s, mass flux of substance j across ox, 

control surface S into considered 
phase (lb/itlhr); prod, 

vh"a, mass flux of chemical element a into 
considered phase (lb/fOhr); steel, 

coO1, 

1" The abbreviation for the pound mass is Ib, and for Fe, 
the pound force Lb throughout the paper. C, 

volumetric rate of generation of 
substance j by homogeneous chemi- 
cal reaction (lb/ftShr); 
mass of chemical element a in unit 
mass of mixture (dimensionless); 
mass of chemical element = in unit 
mass of substance j (dimensionless); 
conserved property, equation (26); 
conserved property, equation (16); 
conserved property, equation (20); 
conserved property, equation (21); 
heat flux away from considered 
phase across the L control surface, 
Fig. 3 (B.t.u./ftshr); 
heat flux away from considered 
phase across the S control surface, 
Figs. 1 and 3, (B.t.u./ftShr); 
heat flux across S per unit mass 
transfer, equation (54), (B.t.u./lb); 
mass of "oxidant" combining with 
unit mass of "fuel" in simple chemi- 
cal reaction (dimensionless); 
distance of location on surface from 
axis of symmetry, equation (36) fit); 
temperature (°F); 
distance along surface in stream-wise 
direction (ft); 
distance normal to surface (it); 
surface heat transfer coefficient 
.(B.t,u./fOhr oF); 
"exchange coefficient", 
= Dp (lb/ft hr); 
"thermal exchange coefficient" 
= k/c  (lb/ft hr); 
dynamic viscosity (lb/ft hr). 

chemical element; 
inert chemical compound; 
chemical compound; 
reactant in a simple reaction, e.g. 
fuel, 
reactant in a simple reaction, e.g. 
oxidant; 
product in a simple reaction, e.g. 
product; 
steel; 
coolant gas in transpiration-cooling; 
iron; 
carbon; 
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G, state of fluid mixture in main stream; 
S, state of fluid mixture at S control 

surface; 
T, state of transferred substance, see 

Section 2.2; 
L, state of fluid mixture at L control 

surface; 
O, state of transpiration coolant in 

supply reservoir; 
0, reference state; 
e, main stream at outer "edge" of 

boundary layer. 

1. INTRODUCTION 
1.1. Purpose of the paper 
Tm~g~ are many methods available for the 
calculation of mass transfer rates in particular 
circumstances. The notation, generality, and the 
physical and mathematical exactness of the 
methods currently differ according to the 
industry in which the problem has arisen. Thus, 
to name just two examples, chemical engineers 
calculating absorption rates use molal concen- 
trations, the "stagnant-film" idealization, and an 
empirical equation for the surface conductance; 
while aeronautical engineers concerned with 
transpiration cooling use mass concentrations 
and exact or approximate theoretical solutions 
of the laminar boundary-layer equations. 

It is the aim of the present paper to outline a 
formulation of the mass transfer problem which 
is sufficiently flexible and general to accommo- 
date all mass transfer processes and sufficiently 
simple in use to be accessible to design engineers. 

1.2. Outline of  the proposed method 
The Ohm's law of  mass transfer. The aim of 

convective mass transfer theory is to calculate 
the rate of transfer of material across a stream 
boundary. We give this quantity the symbol 
m", with units: lb/ft2hr. 

The laws governing mass transfer processes 
permit the mass transfer rate to be related to the 
stream and boundary properties by an equation 
of the Ohm's law form, namely: 

,n" = g .  B (34) 

where B is a dimensionless driving force, depen- 
dent for its value on the composition 
and temperature of the main stream, of 

the fluid in contact with the surface, 
and of the transferred substance; 

g is a surface conductance (units = 
lb/ftShr) expressing the influence of 
fluid-mechanical factors: stream velo- 
city, surface shape, etc. 

Methods of calculating the conductance g are 
discussed in Section 2.5 below. The whole of 
Section 3 is devoted to the evaluation of the 
driving-force B in particular circumstances. 

Range of  applicability of the method. The 
method is valid for both gases and liquids in 
laminar or turbulent steady flow. Chemical 
reaction may occur. In the latter case, however, 
the permissible transport-property variations 
are restricted. These restrictions are discussed in 
Section 2.3. 

1.3. Relation to earlier work 
Origins. The present method arose out of 

studies of the work of Hatta [1] on liquid-phase 
reactions, as presented in the book by Sherwood 
[2], and of the work of Nusselt [3] and Burke 
and Schumann [4] on the combustion of carbon. 
The emphasis on concordance with boundary- 
layer theory was stimulated by the work of 
Eckert and Lieblein [5] but, by a fruitful acci- 
dent, mass concentrations were used rather than 
molal ones. 

The first presentations of the general method, 
using the differential equations of atomic and 
energy conservation [6] and with derivation of 
corresponding approximate solutions of the 
laminar boundary-layer equations [7] were 
made in connexion with studies of the com- 
bustion of liquid fuels. The first exact solutions 
of the boundary-layer equations in the present 
terms were published by Emmons [8]. The 
formulation was later somewhat elaborated 
[9, 10] particularly in the direction of the use of 
constructions on enthalpy-composition dia- 
grams for the solution of simultaneous-transfer 
problems [ 11, 12, 13 ]; the latter are not discussed 
here. 

The present paper represents a development 
of the above work, being improved as regards 
rigour of derivation, note having been taken of 
the criticisms of Merk [14]. A more careful 
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definition of the concept of the "transferred 
substance" has permitted extension of the 
method to processes, common in chemical- 
engineering equipment, in which substances are 
transferred through the phase boundary in both 
directions simultaneously. 

Parallel work. The ideas and techniques which 
will be presented have also been independently 
invented and exploited by many other authors. 
It is only possible to mention the main contribu- 
tors here. 

An important stream of related work is that 
started by Busemann [15] and continued by 
Bosnjakovic [16-20]. The latter author has 
made particularly extensive use of graphical 
methods for transfer calculations, and has made 
a thorough study of the simultaneous processes 
of mass transfer, heat transfer and chemical 
reaction which occur in the gas producer. 

The simplifications which can be made to the 
differential equations when equality exists 
between the diffusivities of matter and Ivzat have 
long been exploited in the theory of gaseous 
flames. Particular mention must be made of the 
early contributions in this regard by the Russian 
workers, Zeldovich and Frank-Kamenetsky [21] 
and Schwab [22]. These authors studied the 
system designated "simple chemical reaction" 
below(simplifying assumptions (iii), (iv), (v), (vii), 
(viii) and (ix)), but did not consider mass trans- 
fer across a phase boundary. 

Since World War II, numerous theoretical 
studies have been made of the combustion of 
liquid-fuel droplets in oxidizing atmospheres; 
workers who use methods similar to the author's 
include Varshavskii [23], Goldsmith and Penner 
[24], and Agafanova et al. [25]. A generalization 
has been made by Coffin and Brokaw [26]. 

Still more recently, interest in simultaneous 
mass transfer and chemical reaction has been 
awakened among aerodynamicists concerned 
with the cooling of the surfaces of high-speed 
missiles. The most extensive theoretical study of 
this subject is that of Lees [27]. Related publica- 
tions are those of Sutton [28], Hartnett and 
Eekert [29], Bromberg and Lipkis [30], and 
others too numerous to mention. 

Remarks on notation. The notation used by 
the above authors naturally exhibits wide 
deviations from that used here, and cannot be 

reviewed in detail. However, the following 
remarks may be of assistance. 
.... In the chcmicad-crigincering lit~'ature (see, for 
example, Sherwood and Pigford [31] ), the 
symbol ko for gas-side surface conductance is 
equivalent to g, used here, divided by (absolute 
pressure times local mixture molecular weight). 
The symbols kt, and kc are equivalent to g 
divided by local mixture density. Many of the 
symbols for surface conductance used by other 
authors have the latter significance. 

Our surface conductance g is equal to the 
surface heat transfer coefficient a divided by the 
constant-pressure specific heat of the mixture c, 
if enthalpy transfer is in question. Therefore 
g l/(k/c) has the significance of a Nusselt number, 
where I is a reference dimension of the body and 
k is the mixture thermal conductivity. The 
writer finds it preferable to introduce the 
symbol F for k/c, and the symbol y for Dp 
where D is the diffusion coefficient and p the 
local density. 

The driving force B, was referred to as the 
"transfer number" in the writer's previous 
work. The symbol B' used by Lees [27] has the 
same significance. 

In the present work the mass fraction, m#, will 
be used as the measure of concentration, 
regardless of the phase of the mixture. Thus, in 
the present notation, m# signifies the mass of 
chemical compound j to be found in unit mass 
of local mixture. 

1.4. Guide to the remainder of the paper 
Sections 2.1, 2.2, 2.3 and 2.4 contain, in 

condensed form, the analysis leading from the 
laws of physics to the standard differential 
equation and boundary condition of mass 
transfer; the various sets of essential simplifying 
assumptions appear in Section 2.3. All these 
sections can be skipped by readers interested only 
in the use of the method. 

Section 2.5 explains how the surface conduct- 
anee g can be calculated in a variety of practical 
cases; the formulae are stated but not derived. 
Section 2.6 then summarizes the calculation 
procedure which is recommended for predicting 
mass transfer rates. 

Section 3 shows, by way of a series of 
examples, the manner in which the driving force 

N 
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B can be calculated. The examples are chosen so 
as to cover processes arising in chemical, aero- 
nautical and mechanical engineering. 

2. SIMPIAFICATION, STANDARD FORMULATION,  

AND SOLUTION OF THE DIFFERENTIAL 

EQUATIONS 

2.1. Differential equations o f  conservation and 
f lux  

The experimental laws governing the distribu- 
tion of (time--mean) concentration and enthalpy 
in a non-uniform steady fluid stream cart be 
represented by differential equations. The laws 
comprise the conservation of  matter, the First 
Law of Thermodynamics, the Fick Diffusion 
Law, and the Fourier Law of Heat Conduction. 

"Coupling" of the fluxes is disregarded, i.e. 
it is suppoged that no diffusion of mixture- 
component j occurs in the absence of a gradient 
in the mass fraction of j,  mj, and that no heat 
transfer occurs in the absence of a temperature 
gradient. The barycentric co-ordinate system is 
used; this means that the diffusion flux of  mix- 
ture-component j is defined as equal to the total 
mass flux vector of  j at the point in question 
minus the convective mass flux vector of j ;  the 
latter quantity is defined as mjG, where mj is 
the local mass fraction of  j,  while G is the net 
mass flux vector, i.e. the sum of the total mass 
flux vectors of  all the components of  the mixture. 

The equations are written in vector form for 
the sake of compactness ;t they are: 

t Some readers may like to be reminded that, in 
Cartesian form, equation (1), for example, would read: 

8mi am~ + am~ 
pu--~- x + pv ~ pw ~z 

a I am, 
ex [Y '~x-]  - 

a ( am,~ a [ am, ~y Q,,-ff-y ! - y £  [~,,--~-) = o 

where x, y and z are the Cartesian co-ordinate directions; 
u, v and w are the local fluid velocities in these 
directions, defined so that, if p is the local fluid 
density, then 
pu, pv and pw are the components of the total 
mass flux vector G. 

The other equations can be similarly translated; 
although the presence of the summations, --,, renders them 

J 
rather unwieldy. 

for a chemically inert substance, i 

G.V(m,.) -- V{y,(Vm,)}  ---- 0 (I) 

for a substance j,  which may enter into a chemi- 
cal reaction 

G.(Vmj) -- V {y~(Vm~) } = m'"~ (2) 

where m"'~ is the rate of generation of sub- 
stance j by chemical reaction (units, lb/ftShr) 

For a chemical element a: 

G. (Vn~) -- V {Y~ Ys n=,i (Vm~) } = 0 (3) 
J 

where n,,~ is the mass of chemical element 
contained in unit mass of chemical 
compound j ;  

n= is the mass of chemical element 
contained in unit mass of local 
mixture. 

For the enthalpies, when shear work,+ + 
ki'netic energy, gravitational potential energy 
and electrical and magnetic effects can be 
neglected: 

G. (Vh) -- V {Yyjh~ (Vmj) } -- V {Pc(Vt) } = 0 (4) 
J 

where ha is the partial enthalpy of component j 
in the local mixture (B.t.u./lb); 

h is the specific enthalpy of the mixture 
( ~. Yhjm~). 

J 

In equation (4), the first term represents the 
convective enthalpy flux, the second term repre- 
sents the enthalpy flux associated with diffusion, 
while the third represents the heat flux (since 
Pc-------k, the thermal conductivity. The reason 
for preferring the use of P should become 
apparent later when the simplified forms of the 
equation are dealt with). 

2.2. The wall-flux boundary condition 
Consider an element, illustrated in Fig. 1, of a 

surface separating the fluid under consideration 
from a neighboudng phase; this surface can be 
termed variously "pbase boundary", "interface" 

At high velocities, the enthalpy h in the first term 
must be replaced by the stagnation enthalpy of the mix- 
tur¢, and a further term must be added expreuing the 
shear work per unit volume. Details are given in the 
Appendix. 
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or "wall". The surface is pervious to material; 
we shall relate the magnitude of  the mass flux 
through it, m" ,  to the gradients in stream p r ~ . ,  
perties measured at the control surface S which 
is in the fluid immediately adjacent to the inter- 
face. To do this we must consider two states: the 
S-state and the T-state. 

,',~ [ s 

. . . . .  

L~T----I . . . . .  I . . . . .  I 

I | ' 
2" [ --d 

FIo. 1. Control volume used in deriving the boundary 
conditions, equations (9), (10) and (11). 

The S-state is the state (time-mean com- 
position, temperature, etc.) of  the fluid mixture 
at the control surface S. The quantities mj.s ,  
is, h~,s, etc., can in principle be measured by the 
usual sampling and analysis instruments. 

The T-state, i.e. the state of the transferred 
substance, may be regarded as a fictitious mix- 
ture state: it does not exist at any particular 
point, but is defined as follows. Its composition 
is sufficiently defined in terms of the mass 
fractions m~.a,, n,.a,, etc., via the equations 
involving mass fluxes: 

m,.a, -- m " , / m "  (5) 

where m"~ is the total (i.e. convective plus 
diffusive) mass flux of the inert substance i into 
the fluid phase; and 

n~.a, --  m"~Im"  (6) 

where m"~ is the total mass flux of the chemical 
element a into the fluid phase, irrespective of  the 
chemical compounds in which ¢ happens to find 
itself. 

The state of  chemical aggregation of the trans- 
ferred substance is not completely specified by 
these definitions; it is not required. The quan- 
tity m"= is conveniently evaluated in terms of  the 
total mass fluxes of the various substances, 
m"~,s, through the control surface S, by way of 
equation: 

rh"o = Y. n~.~ m"~,s (7) 
J 

In contrast to the practice for n~"i and m"~, a 
suff~ (here S) has to he appended to K~"j 
hecause, ingeneral, j may take-part in a chemical 
reaction; thus an evaluation of  rh"~ at the con- 
trol surface L of Fig. 3 would, in general, yield a 
different value from an evaluation at S. But of  
course 

T, ffa. ~ th"~, S 
J 

must be equal to 

J 
because chemical elements are neither created 
nor destroyed. Evaluation at the S control sur- 
face is preferable for present purposes because 
this surface lies in the fluid under consideration. 

The  enthalpy o f  the transferred substance, ha,, 
is defined for similar reasons by the equation: 

ha, rn" - -  Y~hj,s m"~,s  - -  @"s (8) 
. J 

where q " s  is the heat flux caused by the tem- 
perature gradient across the control surface S, 
directed outward from the fluid under considera- 
tion. 

The T-state may thus be interpreted as that 
which must prevail at the lower surface of the 
fictitious control volume of Fig. 1 ff the conser- 
vation laws are to hold and if there is no diffusion 
or heat transfer across this surface. 

Application of  the conservation and flux laws 
underlying equations (1),  (3)  a n d  (4) to the 
control volume of  Fig. 1 now yields the follow- 
ing boundary conditions: 

For  the chemically inert substance i: 

m , , =  {y, (am#Oy)}s  (9) 
mi,s -- mi,a, 

where y is the distance normal to the wall. 
For the chemical element a: 

, ~ " =  ~ (lO) 
tla,S - -  ha.a, 

For the enthalpy: 

{y~h~ (Ore JOy) } s +  {-Pc (Ot/Oy) } s 
, ~ " . .  ~ ( l l )  

hs - -  ha, 

No such boundary condition is available in 
general for the chemical substance j since the 
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state of chemical aggregation of the trans- 
ferred substance is not specified ( j  may react at 
the phase boundary). 

2.3. Simplifications necessary i f  reaction-kinetic 
considerations are to be avoided 

Because of the term appearing on the right- 
hand side of equation (2), evaluation of which 
involves knowledge of the reaction kinetics of 
the fluid phase, solution of the equations (3) and 
(4), with boundary conditions (10) and (11), is 
not possible unless simplifying assumptions are 
made. The validity of these assumptions will not 
be examined here, but it should be remarked 
that those relating to the transport coefficients 
are close to reality for all fully turbulent fluids 
and for gases containing components of roughly 
uniform molecular weight. The simplifying 
assumptions represent alternatives. 

Simplifying assumption (i). When, at any 
particular point in the stream, all the 7;s  of 
substances containing element a are equal to 
ach other, equations (3) and (10) reduce to: 

G. (Vn.) -- V {y.(Vn,,)} = 0 (12) 

and 

rh" - -  {7. (OndOY) } s (13) 
/ ' / ¢ t ,S  - -  / % , T  

where 7, is the common value of the set of 7/s. 
Simplifying assumption (ii). When, at any 

particular point in the stream, all the 7 /s  are 
equal to each other and to the quantity F, 
equations (4) and (11) reduce to: 

G. (Vh) -- V {F(Vh) } = 0 (14) 

and 

m , , _  { r (Oh/Oy)}s  (15) 
hs  - -  hT 

Simplifying assumption (iii). Suppose that two 
substances, designated "fuel" and "oxidant" for 
concreteness, take part in a simple chemical 
reaction to produce a third substance (product) 
without intermediate transformations; suppose 
further that the quantities yru and 7ox are equal 
to each other at every point in the stream then, 
if we define a quantity P1, through: 

Px = mtu - -  mox/r (16) 

where r is the mass ratio of oxidant to fuel in the 
stoichiometric equation, then the recognition 
that, for this reaction, we can put: 

th" ' tu  = m" 'ox / r  (17) 

permits us to deduce from equation (2) that: 

G. (VP1) -- V {7,(VPx) } = 0 (18) 

The quantity Pa.T can be evaluated, since it 
does not entail knowledge of the state of chemical 
aggregation of the transferred substance. Con- 
sideration of the control volume of Fig. 1 now 
yields the boundary condition: 

m,,  _ (7x(bP1/gy) } s (19) 
Px,s -- PI.T 

y, is of course the common y of the substances 
designated "fuel" and "oxidant". Obviously, 
despite the use of the latter terms, the analysis is 
in no way restricted to combustion reactions. 

As alternatives to the assumptions leading to 
(18) and (19), two further cases may be con- 
sidered, namely: 

(iv) If the 7's of fuel and product are equal to 
each other at every point in the stream, having 
the common value yn; and if a quantity Pn is 
defined by: 

P, = mtu + myron~(1 + r) (20) 

then equations (18) and (19) hold with the sub- 
script (2) in place of subscript (1). 

(v) If the y's of oxidant and product are equal 
(to Yn) at each point, and Pn is defined by: 

Pa = mox/r + mproa/(1 + r) (21) 

then the equations (18) and (19) hold with the 
subscript (3) in place of subscript (1). 

Simplifying assumption (vi). When chemical 
reaction is absent, the fluid mixture is ideal, and 
the specific heat of the fluid is uniform, equations 
(4) and (11) again reduce to (14) and (15). The 
enthalpy h can in this case be expressed in terms 
of temperature, at any rate within the phase 
under consideration, via: 

h ~ c(t --  to) (22) 

where t o is an arbitrary reference temperature. 
No restriction on the 7's need be imposed. 

Simplifying assumption (vii). When a single 
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simple chemical reaction takes place, of the 
type described under (iii), if the fluid mixture is 
otherwise ideal with uniform specific heat, and 
if further the y of fuel is equal to F at every point 
in the mixture, equations (4) and (11) again 
reduce to equations (14) and (15). This time the 
fluid-phase enthalpy can be expressed as: 

h -- mfu H + c(t -- to) (23) 

where H is the heat of reaction per unit mass of 
fuel. 

Alternative simplifications are clearly possible, 
as follows: 

(viii) If, instead of y~u = F, we have Vex = F 
at every point, equations (14) and (15) now 
hold with: 

h = mex H / r  q- c(t  - -  to) (24 )  

(ix) If, alternatively, Yprod = F, equations 
(14) and (15) hold with the fluid-phase enthalpy 
defined through: 

h ------ - -  mprod 1-1/(1 + r) q- c(t  - -  to) ( 2 5 )  

Further simplifying assumptions. The above 
nine cases do not exhaust the possibilities. Other 
simplifications involving a different mixture of 
restrictions on the transport properties and 
restrictions on the thermodynamic properties 
can be easily envisaged; they may be convenient 
in the analysis of particular cases. 

Generalization. Comparison of the pairs of 
equations (I) and (9), (12) and (13), (14) and 
(15), (18) and (19), shows that they have a 
common form which we may write as: 

G. ( v p )  - v {v(vp)}  = 0 (26) 

and 

rh" -- b' (OPl~y) } s (27) 
Ps- P~ 

whel'e P =--. rn~, n., h, P]. P,, Ps, or any other con- 
served property,~ and ~, may be replaced by F if 
enthalpy is in question. 

f Fluid properties obeying equation (26) might be 
called "¢omerved properties of the second class" to 
distinguish them from "conserved properties of the 
first class" which are conserved in adiabatic steady-flow 
mixing proo~____q~. 

2.4. Re-arrangement for the case of uniform 
S- and T-states 

All the solutions of the equation (26) which are 
known to the author (except those for n~" ---- 0) 
relate to cases in which the state of the fluid in 
contact with the surface and the state of the 
transferred substance are uniform over the 
boundaries of  the field of integration through 
which mass transfer occurs. This means that Ps  
and PT are constants in the integration pro- 
eedure. 

In such cases it is convenient to reduce all 
mass transfer problems to a common form by 
introducing the new variable b, defined as: 

b - -  P-- P s  (28 )  
Ps-- Pr 

Equations (26) and (27) then reduce to: 

G. (Vb) -- V {~(Vb) } = 0 (29) 

m"  = Y 8 

Nature of the mathematical problem. We now 
see that, whatever the nature of the comerved 
property which is under consideration, the task 
of predictln s mass transfer rates reduces to the 
solution of equation (29) with, as boundary 
conditions at the wall, equation (30) and: 

bs = 0 (31) 

Since G and y appear in (29), solution of  this 
equation requires prior (or sometimes simul- 
taneous) solution of  the momentum and con- 
tinuity equations for the fluid stream, and also a 
proper accounting for the dependence of ~, on 
the fluid state, i.e. on b. 

Behaviour of  the solution. Without treating any 
particular configuration of  surface and stream~ 
it is possible to conclude, from dimensional 
analysis and other general considerations, that 
the solution to any forced-convection mass 
transfer problem with uniform S- and T-states 
can be cast in the form: 

-~ - - f B , - - ,  
Fo 

where G is the mass velocity in the main stream, 
say at enuT; 
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l is an apparatus dimension; 
~'0 is the fluid viscosity measured at some 

reference state; 
~0 is the corresponding value of the 

exchange coefficient of the relevant P; 
B----be, the value of b in the main 

stream. 

The latter definition leads to the important 
relation: 

Pc - -  Ps 
B = (33)  

Ps - -  PT 

Further thought about the solution reveals 
that it may be convenient to introduce a quantity 
g (units, lb/ft=hr) via the definition: 

th" -- gB (34) 

and to express the solution to equation (29) in 
the form: 

gG -- f {B , Glp.o_ '/~00 °} (35) 

The quantity on the left-hand side of (35) is akin 
to the Stanton number; GI/I~ o is a Reynolds 
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number; and /~0/?o is a Prandtl or Schmidt 
number according to the nature of the conserved 
property appearing in B. Alternatively, the 
group, gl/?o a sort of Nusselt number, may 
appear on the left-hand side. 

By comparing equations (30) and (34), we see 
that g is obtained from the solution of equation 
(29) via: 

{ _~b~ /B (34a) 
g = Y ~YJsl  

2.5. Some solutions or calculation procedures for g 
Solution for the flat plate in iaminar flow. As an 

example, Fig. 2 presents a plot, based on the 
exact boundary-layer solutions of Micldey et al. 
[32], of(gx/y)/x/(G,x/~) vs. Bfor the flat plate in 
a laminar stream. The transport properties /~ 
and y are supposed uniform; x is the distance 
from the leading edge at which g prevails, and 
G~ is the uniform "mass velocity of the stream. 
Each curve is valid for a particular/~/~, (Prandtl 
or SchmJdt number). 

Exact solutions are not available for very high 
or very low values of/~/y. However, for high 
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FIG. 2. Exact solutions of the boundary-layer equations for the fiat plate in laminar flow [32]. 
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values with B lying between --0.5 and.+ 1.0, the 
asymptotic solution of Merk [33] can be used 
for.the :ordinate of Fig. 2: it is . .  

0.3387 (/z/y)1'8/(1 + 0.566 B). 

Other solutions for laminar boundary-layer 
flows. Surprisingly, only a handful of exact 
solutions of the laminar boundary-layer eqna- 
tions are available for other cases than the flat 
plate. Spalding and Smith [41] have recom- 
mended that mass transfer through two-dimen- 
sional or axi-symmetrical laminar boundary 
layers in general should be Calculated from an 
approximate quadrature formula which, in the 
present terms, runs: 

( )'" ~- z R z G F _ I  g= K(y/t~ ~'') R*al/fo __ _ , dx (36) 

where x is the stream-wise distance from the 
location at which mass transfer 
begins; 

R is the distance of the section in ques- 
tion from the axis of symmetry (N.B. 
the R's disappear for a two-dimen- 
sional flow); 

G~ is the mass velocity at the outer 
"edge" of the boundary layer at 
location x; 

g is the surface conductance, defined by 
(34), valid for location x; 

K is a function of B and ~/y (in fact it is 
equal to the ordinate of Fig. 2); 

F is a funct ion o f  B and ~/y .  

Interpolating in exact solutions tabulated by 
Livingood and Donoughe [35], Spalding and 
Smith have deduced some values of K and F 
valid for ~,/~ = 0.7; these values are contained 
in Table 1. At other values of iz/?, K may be 
obtained from Fig. 2; F tends to 3.8 for all B 
at high ~/y. 

Table 1 

1 5.0  ,io 1.0 20 3.0 1 4 . 0  
0.292 0"213 0-169 0.120 0.0930 0"0770 10-0670 

~ ~ 2"68 3"07 3-43 3"73 i4"04 4"36 4.43 
" i 

i 

There is a great need for extended tables of K 
and F, covering both positive and negative B 
values~and a wide.range of ~/y. Thereafter the 
influence of variable ~ and ~, needs to be 
thoroughly investigated; only a few isolated 
studies of this effect have been made so far. 
Efforts to fill these gaps are being made in the 
writer's laboratory. 

Calculation method for mass transfer through 
turbulent boundary layers. Still fewer studies 
have been made of mass transfer through turbu- 
lent boundary layers. A quadrature formula 
which is simple, and probably fairly reliable, can 
be derived by extending the method of Ambrok 
[36] to mass transfer; one obtains for ~/y = 0.7 

G--: g = 0"0365 [ I n ( l ;  _ B)j ] 

fx Rt-/Yi-~.G. dx (37) 
d o  ¢ 

Once again there is a great need for experi- 
mental and theoretical research in this field; 
important contributions are being made by 
Mickley and co-workers [32, 37], and by 
Rubesin and co-workers [38, 39]. 

Other methods. Of course the value of g need 
not be obtained by theoretical analysis at all: it 
may be obtained from experiment. The book of  
Sherwood and Pigford [31] contains many such 
experimentally derived values, most of them 
obtained with B values close to zero, and with 
almost uniform transport properties (but see 
"remarks on notation" above). The value of g 
may also be obtained by way of the Reynolds 
analogy; it is equal to the shear stress divided 
by the stream velocity. This value is of course 
usually only approximate, as is well known. 

2.6. General procedure for calculating mass 
transfer rates 

The practical importance of the way in which 
the mass transfer problem has been formulated 
above will now be summarized: 

(a) The influences of the shape of mass trans- 
fer surface, the fluid velocity, the transport 
properties, etc., may he determined by aero- 
dynamic analysis; this results in graphs or 
formulae of the type just presented. These 
graphs or formulae are independent of the 
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nature of the transfer process, i.e. they hold 
whether the process comprises vaporization, 
combustion, transpiration-cooling, distillation 
or any other process. 

(b) The influences of the particular process are 
expressed through the value of the driving force 
B, defined by equation (33). B depends only on 
conditions in the G- (main stream), S- and T- 
states, and not on the aerodynamics. Examples 
of the evaluation of B are given below. 

(c) With B obtained from the thermodynamic 
analysis of (b) and g obtained from the aero- 
dynamic analysis of (a), the required mass 
transfer rate is obtained from equation (34). 

(d) Separation of the aerodynamic and thermo- 
dynamic aspects is unfortunately not quite 
complete, a connexion is effected when the 
variation of the transport properties /~ and ~, 
with temperature, etc., is appreciable. This 
difficulty can be partially overcome by judicious 
use of "average" values of the transport pro- 
perties. 

3. SOME DRIVIN~FORCE EXPRESSIONS 
In this section we show how the analysis of 

Sections 2.1, 2.2 and 2.3 can be used to enable 
the numerical value of the driving force B to be 
determined in various particular cases. The list 
of driving-force expressions is not exhaustive, 
but should suffice as an illustration of the method. 
For concreteness, the "simple reaction" is 
discussed in terms of combustion; the analysis 
is of course equally applicable to a liquid-phase 
reaction, such as that between ammonia and 
sulphuric acid solutions. 

In the interests of brevity, the practical 
implications of the driving-force expressions are 
not discussed. 

3.1. Transfer o f  an inert chemical substance 
No simplifying assumptions are needed to 

convert equations (1) and (9) to the standard 
form of (29) and (30). We can therefore write 
the driving-force expression for this case, without 
restriction, as: 

B = m~,G - -  m i , s  (38) 
mi,s  - -  m~,T 

In this general form'the driving force may be 
used when many substances are transferred 

simultaneously, as in rectification of a multi- 
component mixture, and irrespective of whether 
some of the other (non-i) components are 
reacting chemically. Often mi,r must be deter- 
mined by simultaneous consideration of transfer 
on the liquid and gas sides of the phase boun- 
dary. 

Special cases. When i is the only mixture 
component transferred (e.g. i -~ HsO when steam 
condenses from a steam-air mixture), we have: 

m~,r = I (39) 
then 

B -- mi,¢ --  mi,s (40) 
m i . s -  1 

This expression is also valid in many drying, 
absorption and stripping problems. Clearly, 
since m~ ~< l, B and m" are positive when 
mi, G ~ mi,s. 

When i is not transferred at all, for example 
i = air in a drying process, we have: 

B -- mi,a -- mi,s (41) 
mi,s 

3.2. Transfer o f  a chemical element; simplifying 
assumption (i) 

For this case we have, as the driving-force 
expression: 

B --  n~,a -- na,s (42) 
h a ,  S - -  ha ,  T 

This expression is useful when several chemical 
reactions take place, as for example in the gas 
producer. If it is further permissible to assume 
ya = ya, any linear combination of n, and na 
can be used as the conserved property. This fact 
can be used to derive B-expressions which are 
easy to evaluate (see [10] for a gas-producer 
example). 

If, further, all r, 's are equal and only two 
streams of substance enter the mixing field (e.g. 
main stream and transferred substance) it is 
meaningful to define a quantity f as mass of 
material from one of the streams per unit mass of 
mixture, irrespective-of the state of chemical 
aggregation. Since f is a linear combination of 
the ha'S, we can write the driving force as: 

f c - - f s  B . . . . .  (43) 
f s - - f T  
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This step is one of the foundations of the 
graphical method of determining B using 
.enthalpy-composition diagrams (see [11, 12, 13, 
34] for examples). The first use of such diagrams 
for transfer calculations was made by Busemann 
[15] in a pioneer work that has been undeservedly 
neglected; an important series of contributions 
to their development has been made by Bosn- 
jakovic [17-20]. 

3.3. Enthalpy transfer; simplifying assumption (ii) 
For this case the relevant driving-force 

expression is: 

B - -  h a  - -  hs  ( 4 4 )  
hs  - -  hT 

This expression is the second foundation of 
the graphical method just referred to; it also is 
particularly useful when complex chemical 
reactions occur. 

Special  case. When the wall is impervious to 
mass transfer it is easy to show, by introducing 
(44) and letting B tend to zero, that equation 
(34) degenerates to: 

{7"L = g *  ( h a  - -  k s )  (45) 

where ~"L is the heat flux away from the phase 
boundary (Fig. 2); 

g* is the value of g valid for B -- 0. 

This expression is useful when calculating 
heat transfer rates from dissociated gas mixtures, 
as has recently become widely recognized (see, 
for example [40]). 

3.4. Mass  transfer with a simple chemical 
reaction 

Simpli fying assumption Off). Inspection of 
equation (16) shows that this time we have: 

B -- (mtu -- mox/r)¢ - -  (mtu - -  mox/r)s  (46) 
(mtu -- mox/r)s  - -  ( m ~  - -  mox/r)T 

Special  cases. (a) We consider the case in which 
one of the reactants, say fuel, is the only trans- 
ferred substance. In this case it is usual for the 
main-stream value of the concentration of 
unburned fuel to be zero. Thus: 

mfu,T = 1 "| 
mox.T = 0 ~ (47) 

mtu,G = 0 J 

Inserting (47) in (46), we obtain: 

B --  - -  mox, o/r  - -  (mtu --  mox/r)~ (48) 
( m ~ .  - m o x / r ) s  - 1 

(b) if  the surface fuel concentration is zero 
(m~u.s = 0), equation (48) reduces to: 

B - -  mox,o/r  - -  max,Mr (49) 
1 + mox,s/r  

This expression is relevant to the combustion of a 
non-volatile fuel. If, further, the chemical 
reactivity of the fuel surface is such that mox.s 
also equals zero, the driving-force expression of 
(49) takes up its maximum possible value, 
namely: 

B- mox, o (50) 
r 

Equation (49) is also relevant to the burning of 
gaseous fuels (transpiration-coolants) which are 
expelled at such low rates that chemical reaction 
takes place within the porous walls. (Of course 
the cooling effect of such a procedure would not 
he large!) 

(c) If  the surface oxygen concentration is zero, 
equation (48) reduces to: 

B --~ mox.o/r  + mtu.s (51) 
1 - -  mtu,s 

Tiffs expression usually applies to volatile liquid 
fuels, and to gaseous fuels injected through the 
wall at a high rate. However, the expression is 
seldom useful for determining B; for the quantity 
mtu.s is not as a rule among the data of the 
problem. 

(d) A special case of  equation (46) arises in the 
combustion of  steel. This may he regarded as a 
non-volatile fuel which also happens to have a 
mainly non-volatile oxide. The latter fact leads 
to an interesting expression for Px.T; it is: 

(mtu -- mox]r)T = 1/{nc..t, el (1 + rFe) }--rre (52) 

where nc.,teel is the mass of carbon per unit 
mass of  steel; 

rFe is the mass of oxidant (usually 
oxygen) combining with unit 
mass of iron. 
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The resulting driving-force expression is: 

B =  
mox, G -- mox,s 

(riFe rre q-- nc,steel rc)/(nc,st~t(l  q- rFe) -- rFe) 
q- mox,s (53) 

where rc is the mass of oxidant combining with 
unit mass of carbon. 

The expression on the fight-hand side of 
equation (53) is usually negative and close to the 
minimum possible value of any B, namely --1 
(because mox,s "" 0 and nc,st~l is small). It is 
useful in analyses of the oxygen-cutting process 
of workshop practice. The process sometimes 
also occurs inadvertently in rocket motors! 

3.5. Mass  transfer with a simple chemical 
reaction 

Simplifying assumptions (iv) and (v). Driving- 
force expressions may also be derived in terms 
of the" conserved properties/'1 and/ '2. They are 
useful if it is desired to calculate the product 
concentration at the surface, the mass transfer 
rate being given. 

3.6. Heat  transfer without chemical reaction 
Simplifying assumption (vi). The driving force 

expression for this ease is obtained most simply 
if the reference temperature for the fluid-phase 
enthalpy in equation (22) is taken as ts. Equation 
(8) is simplified thereby, and because of the 
absence of chemical reaction, to: 

There results: 

h r  = - -  # " s / e n "  

= -- Q, say (54) 

B -  c(ta --  ts) 
Q (55) 

Special cases. (a) Equation (55) is useful in 
many vaporization, drying and condensation 
problems. It holds even when the specific heats 
are not uniform, provided that only small con- 
centrations differences occur or that ~, = F; 
then c is the specific heat of the mixture of  main- 
stream composition. In adiabatic vaporization, 
Q = hzs  where hLs is the latent heat of  vaporiza- 
tion of the liquid. So equation (55) reduces to: 

c(ta - -  ts) 
B = hLs (56) 

(b) In transpiration-cooling by an inert gas, 
the quantity Q is given by: 

Q = Ceool (ts - to) (57,) 

where Ceool is the constant pressure specific heat 
of the coolant; 

t o is the coolant temperature in the 
reservoir from which it is supplied. 

For this case, the driving-force expression 
becomes 

B - -  c ( t¢  - -  t s )  (58) 
Ceool (ts --  to) 

This shows that, with ta, ts and t o fixed, B is 
smaller (and, with it, the necessary coolant flow 
rate) the larger is the s p i r i t  heat of  the coolant. 

3.7. Thermal analysis o f  mass transfer with a 
simple chemical reaction 

Simplifying assumptions (vii) (viii) and (ix). 
Restricting consideration to the case in which the 
only transferred substance is one of  the reactants, 
say fuel, and noting by reference to Fig. 3 that 

7 

FIG. 3. Control volumes useful in deriving expressions 
for hT when only one substance is tramferred. 

the definition (8) of the enthalpy of the T-state 
also implies: 

h r  rh" = Y, hi,L rh" j ,L  - -  q "L  (59) 
J 

we deduce: 
hr  = h~u.z --  ( t "Hrh"  (60) 

This assumes that only fuel is present on the 
L-side of the phase boundary. 

The driving-force expression resulting from 
the substitution of (24) and (60) in (33) is: 

(mox,a -- mox, s) H/r  q- c(ta --  ts) 
B = hLs + O"z l rh"  (61) 
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where hLs is the enthalpy increase of the fuel in 
changing from the L- phase to the 

.S-...phase at constant, temperature 
tL ( =  ts). 

Equation (61) is appropriate to simplifying 
assumption (viii). 

If simplifying assumption (vii) holds, so that 
the enthalpy expressed by equation (23) is a 
conserved property, the driving force expression 
is found in a similar fashion to be: 

(mr~.G - m ~ , s )  H + c(t~ - ts)  
B ----- (62) 

mre,s H + ht.s + il"L/rh" 

A similar expression in terms of repro0 can be 
derived if simplifying assumption (ix) holds. 

Special cases. (a) If the surface oxygen content 
is zero, as is usual for volatile liquid fuels and 
for burning transpiration-coolants (e.g. hydrogen 
gas) at high.blowing rates, equation (61) reduces 
to: 

B = mox,G H/r + c(tG -- ts) 
hLs + (l"r-/m" (63) 

This expression is often easy to evaluate. 
In the case of transpiration-coolants, when 

radiant heat transfer is absent, we have: 

hLs = 0 "l 
(64) 

¢ " L I m "  = Ceo~ ( ts  - -  to) j 
then 

mox,c H]r + c(tc -- ts) 
B = (65) 

Ceool (ts -- to) 

This should he contrasted with equation (58). 
(b) If the surface fuel concentration is zero, as 

occurs with non-volatile fuels or (sometimes) 
with combustible transpiration-coolants injected 
at low rates, and if we can also assume that 
there is no free fuel in the main stream, equation 
(62) reduces to: 

c ( t o -  ts) 
B = ht.s + il"L/rh" (66) 

This expression is sometimes useful for calcu- 
lating the surface temperature when the driving 
force B has been previously specified. 

(c) If a radiant heat flux is present at the sur- 
face, this should clearly be added to ~"L with 
appropriate sign. 

3.8. Other forms of driving force 
Many other expressions can be derived for the 

driving force, for..mass.tranffcx in- terms of mix- 
ture properties in the G-, S- and T-states. In a 
particular flow, many of them are valid simul- 
taneously. Where there is a choice, that form of 
B is to be preferred which is most easily ©valua- 
ted by reference to known quantities; for 
example, in determining the mass flow-rate of 
transpiration-coolant which is necessary to 
maintain a given surface temperature, the 
B-expression of (65) is usually preferable to that 
of (51), since mtu,s is not known. 

4. MORE COMPLI~ P R ~  
The analysis presented in Sections 2 and 3 

suffices for the calculation of the mass transfer 
rate, m", if sufficient data are available concern- 
ing the properties of the G-, S- and T-states. 
However, the data concerning the latter two 
states are often only given indirectly. Here we 
merely list the considerations which must be 
invoked when these more complex situations are 
encountered. 

(a) Thermodynamic equilibrium at the surface 
In many cases, e.g. vaporization, it is per- 

missible to assume that the S-state mixture is in 
equilibrium with the adjacent phase (L-state). 
This assumption provides a link hetwcsm the 
surface temperature ts (=  tt.) and some of the 
S-state compositions, e.g. mn~o.s, in a water- 
vaporization problem. The problem can then.he 
solved by simultaneous use of a B-expression 
based on mass conservation and the B-expression 
based on the first law of thermodynamics. 
Enthalpy-composition diagrams are helpful in 
the solution [I 1]. 

(b) Simultaneous consideration o f  two phases 
Often the data are given in terms of conduct- 

anees on both sides of a phase boundary; these 
may involve both mass and heat transfer 
eonduetances. Then, using the equality for the 
two phases of the mass transfer rate and of the 
T-state (unless surface radiation is present), 
simultaneous solution of the Ohm's law relation 
for the two vhases permits the determination 
of rh". 
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(c) Reaction-kinetic considerations 
Sometimes chemical reaction rates are insuffi- 

ciently rapid for thermodynamic equilibrium to 
prevail. In the case of heterogeneous reactions, a 
reaction-kinetic relation between m" and the 
S-state must be invoked; this sometimes results 
in a non-uniform S-state, necessitating a return 
to equations (26) and (27) instead of (29) and 
(30). In the case of homogeneous reactions at 
least one equation of the type of equation (2) 
must be solved. 

5. CONCLUSIONS 

(a) A standard formulation for the steady 
convective mass transfer problem has been 
presented which is capable of accommodating 
the problems arising in chemical engineering, 
aeronautical engineering, air-conditioning prac- 
tice, etc. 

(b) The centre-piece of this formulation is the 
Ohm's law relation, equation (34). 

(c) The formulation achieves a separation 
between aerodynamic factors, incorporated in 
the conductance g, and thermodynamic factors, 
incorporated in the driving force B. The separa- 
tion is only rendered incomplete by non- 
uniformity of transport properties in the 
boundary layer. 

(d) The formulation is valid when chemical 
reaction occurs provided that certain restric- 
tions are placed on the relations between the 
transport properties. 

(e) There is still a great need for standard 
solutions of the boundary layer equations in the 
presence of mass transfer. 
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APPI~TDIX 

The Energy Equation Including 
Kinetic Energy and Shear Work  

A more complete form of equation (4) is 

G. (\'h °) - V{Y~ hj (Vm~)} -- V.{Fc (~t)} -- 
J 

- v ~-~ v ( v , / 2 ) -  ~ s  • N = o (A.1) 

where 

h ° = stagnation enthalpy of fluid mixture 
= h - b  V~/2goJ (B.t.u./lb); 

V = velocity of  fluid mixture defined as 
G/p (ft/hr); 

= viscosity of  fluid mixture (lb/ft hr); 
go = constant in Newton's Second Law of 

motion, 
= 4.1 x 10 a (lb ft/Lb hrS); 

J = mechanical equivalent of  heat 
-- 778 (ft Lb/B.t.u.); 

R s = vectorial radius of  curvature of  local 
stream line; 

R s = scalar magnitude of  R s (ft). 

Equation (A. 1) simplifies in the same manner 
as equation (4) provided that y~ = / "  for all j 
and further that (a) we also have v = ~ (Prandtl 
number = 1), and that (b) the radius of  curva- 
ture of  the steamllr~es R s is large. The resulting 
simplified equation is: 

G. (Vh °) -- V { r  (Vh o) } = 0 (A.2) 

This equation has the stan&u'd form. It differs 
from equation (14) only in that he replaces h. 

The w-011-flux boundary conditions for equa- 
tions (A.1) and (A.2) are identical with those for 
equations (4) and (14); for the fluid kinetic 
energy is negligible at the wall, so that h and h ° 
are identical. It follows that the stagnation 
entlmlpy h ° is a "conserved property of  the 
second class"; it may therefore be used for the 
derivation o f  a driving-force expression. 

The simplification o f  the energy equation 
wl~ich results when Pr----- 1 is o f  course well 
known, being usually attributed to Crocco. 
The present proof  appears to be rather simpler 
and more general than those usually given. 


